在过去的一年中,zk-SNARK的进展超出了预期。尽管普遍共识认为这些创新还需要数年时间,但应用程序,如ZK-EVM,正在出现。zk-SNARK的增强功能已使得探索区块链的新用例成为可能,尤其是,我们正在密切关注使用zk-SNARK解决由机器学习和人工智能增加使用带来的许多紧迫问题的研究。
随着机器学习的普及,它正在广泛应用于各种应用程序中。然而,其预测的可信度以及对不透明数据源的依赖性成为了一个主要问题。复制声称具有高准确度的模型的能力很难,而在实际产品中预测的一致性和正确性也没有保证。
本文旨在简要介绍为什么对基于zk-SNARK的机器学习系统产生了浓厚的兴趣,并讨论了该技术的一些潜在应用。
Paradigm为审计DAO Code4rena提供600万美元代币购买资金:金色财经报道,加密风投公司Paradigm正在资助Code4rena DAO,该DAO通过600万美元的代币购买为寻找漏洞的独立审计人员提供激励。
据悉,Code4rena于去年成立,致力于通过众包任务并将人员与他们独特的专业领域相匹配来解决困扰传统审计模式的低效率问题。目前,DAO已经有3500名审计员(在平台上被称为“监督员”)参与了217次审计。Code4rena曾与OpenSea、Blur、zkSync、Aave、Trader Joe、Sushi和Chainlink等业内知名公司合作。[2023/3/17 13:09:04]
为什么需要ZK-ML?
风投公司MetaWeb首支基金募资3000万美元,将投资DeFi、游戏和DAO:金色财经消息,专注于加密初创公司的风险投资公司MetaWeb Ventures宣布已为其第一只基金募资3000万美元,得到红杉资本、蜻蜓资本、Near Foundation等支持。MetaWeb在邮件中表示,该基金旨在主要投资于去中心化社交媒体、去中心化金融(DeFi)、游戏和DAO。
MetaWeb 表示,该基金在过去几个月以隐形模式运作,已经投资了30多家初创公司,其中包括去中心化交易协议 Orderly Network。MetaWeb Ventures 是作为NEAR Protocol的生态系统基金而成立的。(CoinDesk)[2022/9/9 13:18:14]
使用监督式机器学习时,输入被提供给已经用特定参数训练过的模型。然后该模型产生可被其他系统使用的输出。由于轻量级的机器学习框架和ONNX等格式,现在可以在边缘设备上运行这些推理,例如手机或物联网设备,而不是将输入数据发送到集中式服务器。这提高了用户的可扩展性和隐私性。
ENS DAO宣布发行ENS宪法书,数字版可免费下载:5月6日消息,据官方推特,以太坊域名系统ENS去中心化自治组织ENS DAO宣布发行ENS宪法书,宪法书分为数字版、印刷版、限量版三种。数字版可免费下载,印刷版定价114.39美元,限量版25份,定价15 ENS荷兰拍起拍。[2022/5/6 2:53:47]
然而,需要注意的是,通常会将机器学习模型的输入和参数都保持私密并隐藏在公众视野之外。这是因为输入数据可能包含敏感信息,例如个人金融或生物识别数据,而模型参数也可能包含敏感信息,例如生物识别验证参数。
另一方面,使用ML模型的输出的下游系统,例如链上智能合约,需要能够验证输入是否正确处理以产生声称的输出。
动态 | 基于ETH的金融服务商Monolith与MakerDAO合作推出支持Dai支付的Visa借记卡:基于以太坊的金融服务商 Monolith 宣布已经与 MakerDAO 合作推出支持稳定币 Dai 支付的 Visa 借记卡计划。用户可以使用该借记卡支付日常购物、账单、收取款项 ,但该借记卡目前仅在欧洲发行。(theblockcrypto)[2019/8/17]
机器学习和zkSNARK协议的结合提供了一种新的解决方案,解决了这些看似矛盾的要求。
ZK-ML用例
有许多论文讨论了我们可以如何使用zk-SNARKs来改善我们未来的机器学习。ZK-ML社区提供了一个非常有用的决策树,让我们考虑这种技术的各种用例。
这个决策树基于两个标准的交集:需要隐私和计算完整性,以及使用机器学习解决的启发式优化问题。换句话说,决策树用于确定是否适合使用涉及ZKML的用例,在这些用例中,隐私和计算完整性很重要,并且使用机器学习技术解决启发式优化问题,
以下是zk如何用于ML模型创新的一些方式:
隐私保护机器学习
zk-SNARK可用于在不向模型的创建者或用户公开私有数据的情况下对机器学习模型进行训练。这允许开发可以在敏感或受监管的行业中使用的模型,而不会损害使用个人数据的个人隐私。
可验证机器学习
zk-SNARK可用于证明机器学习模型是在特定数据集上进行训练的,或者特定模型用于进行预测,而不会透露训练数据或模型的详细信息。这可以增加对机器学习模型结果的信任,这在信用评分或医学诊断等应用中非常重要。
安全机器学习
zk-SNARK可用于通过确保模型未被篡改或替换为不同的模型来保护机器学习模型的完整性。这在模型部署在不受信任的环境中的应用中非常有用。
ZKonduit可能的应用
像ZKonduit这样的项目正在将ZK-ML视为赋予区块链眼睛、让智能合约行使判断力、单人预言机以及通常以可扩展的方式在链上获取数据的关键。使用ZK-ML预言者提供了一种更简单、更快速、更高效的方式,将链下数据传输到区块链上,大大增加了将数据带到链上的潜力。ZK-ML可以使“智能法官”解释模糊事件。这可能为Web3带来不可想象的新用例,但以下仅是最近讨论过的一些用例:
ZKKYC
能够证明一个人的身份与相应的身份证匹配,并且该身份证号码不在制裁名单上。虽然这项技术是可用的,但监管机构可能不会接受它,因为它们目前要求银行“了解”其客户,而不仅仅是验证他们不在制裁名单上。这是监管机构的一个新领域,必须采取措施防止不受欢迎的参与者使用去中心化项目。
防欺诈检查
智能合约或抽象账户添加了一个ZK-ML欺诈垃圾邮件检查,用于检测异常行为。这意味着可以通过分析活动模式并将其与已知的欺诈或垃圾邮件活动模式进行比较,使用零知识机器学习技术来检测和防止欺诈或垃圾邮件行为。这可以通过检测和防止恶意活动来帮助确保系统的安全性和完整性。
使DAO自治
Zk-SNARKs技术允许以保护输入数据隐私的方式执行复杂计算,适用于需要保护敏感信息的情况。可以将机器学习算法集成到该技术中,以实现更先进的决策制定、评估和更高效、准确的通信系统。这些能力对未来的DAO内部动态可能至关重要。
结论
将零知识证明集成到人工智能系统中,可以为用户和使用这些系统的公司提供新的安全和隐私保护级别。通过使人工智能能够证明其决策的有效性,而不揭示底层数据或算法,零知识证明可以帮助缓解数据泄露和恶意攻击的风险。此外,它们还可以通过提供透明和可验证的方式来证明其公平性和准确性,从而有助于建立人工智能系统的信任。
随着人工智能领域的不断发展和扩大,零知识证明的应用将越来越重要,以确保这些强大技术的安全和负责任的部署。
投票治理大家都很熟悉,源自Curve推出的veTokenomic模型,在该模型中,用户必须将其治理token按照一定期限锁定为veToken间.
1900/1/1 0:00:00尊敬的火必用户、合作伙伴、朋友们:大家好!首先非常感谢大家对火必的关注和厚爱。光阴荏苒已十年,火必一路走来,经历了无数质疑,可以说是一路披荆斩棘,是我们用户的支持和厚爱,才使我们赢得了市场的认可.
1900/1/1 0:00:00因为迷因币的基本面很差,所以大家都知道热潮是短暂的。当多数人还在努力发掘潜力迷因币时,加密KOLTindorr更愿意为下一波浪潮做好准备。以下是作者在其观察列表上列出的6个领域和16个项目.
1900/1/1 0:00:00原文作者:Biteye核心贡献者Lucky原文编辑:Biteye核心贡献者Crush5月8号Cetus的IDO正式开启,截止至5月10号上午,其Launchpad中的认购资金已超过2.
1900/1/1 0:00:00编者按:本文来自蓝狐笔记,作者:PramodChandrayan,编译:Jos,星球日报经授权发布.
1900/1/1 0:00:00据官方消息,JustLendDAO测试网已正式上线,地址:https://nile.justlend.org/。用户可以通过测试网提前体验TRX流动性质押与能量租赁功能.
1900/1/1 0:00:00