木星链 木星链
Ctrl+D收藏木星链

DAO:DAOrayaki:ZK-ML解决大规模数据模型隐私、可验证及安全的用例

作者:

时间:1900/1/1 0:00:00

在过去的一年中,zk-SNARK的进展超出了预期。尽管普遍共识认为这些创新还需要数年时间,但应用程序,如ZK-EVM,正在出现。zk-SNARK的增强功能已使得探索区块链的新用例成为可能,尤其是,我们正在密切关注使用zk-SNARK解决由机器学习和人工智能增加使用带来的许多紧迫问题的研究。

随着机器学习的普及,它正在广泛应用于各种应用程序中。然而,其预测的可信度以及对不透明数据源的依赖性成为了一个主要问题。复制声称具有高准确度的模型的能力很难,而在实际产品中预测的一致性和正确性也没有保证。

本文旨在简要介绍为什么对基于zk-SNARK的机器学习系统产生了浓厚的兴趣,并讨论了该技术的一些潜在应用。

BendDAO社区正对“DAO金库参与拍卖以解决浮亏”的提案进行投票:7月3日消息,Snapshot投票页面显示,NFT抵押借贷协议BendDAO社区正对“DAO金库参与拍卖以解决浮亏”的提案进行替他,目前支持率达100%,将于7月6日结束。

根据该提案,利用BendDAO金库不仅可以提供资金来弥补浮动损失,还可以证明DAO与其用户的一致性。通过以这种方式利用金库资金,DAO可以强调其与社区成员(尤其是目前的ETH储户)的一致性,并努力与用户和更广泛的NFT行业建立更牢固的关系。[2023/7/3 22:14:50]

为什么需要ZK-ML?

使用监督式机器学习时,输入被提供给已经用特定参数训练过的模型。然后该模型产生可被其他系统使用的输出。由于轻量级的机器学习框架和ONNX等格式,现在可以在边缘设备上运行这些推理,例如手机或物联网设备,而不是将输入数据发送到集中式服务器。这提高了用户的可扩展性和隐私性。

HECO即将开启HECO DAO和HT链上通缩模型:据相关人士透露,HECO生态链上的HT即将在未来一到两个月内加入销毁机制,这标志着HT在HECO链上也即将进入通缩模型。目前尚未得知即将销毁的HT占HECO链上的比例,市场分析人士认为销毁机制的加入可以在一定程度上提高HECO生态的应用体验,另外,据透露,HECO DAO也即将宣布启动,这将进一步推动HECO全球去中心化治理进程加快。[2021/8/26 22:38:25]

然而,需要注意的是,通常会将机器学习模型的输入和参数都保持私密并隐藏在公众视野之外。这是因为输入数据可能包含敏感信息,例如个人金融或生物识别数据,而模型参数也可能包含敏感信息,例如生物识别验证参数。

Layer2 DAO基础协议Metis将于5月13日在Ignition Launchpad进行IDO:Layer2 DAO基础协议Metis宣布将于5月13日进行IDO,第一个IDO平台是Ignition Launchpad(Paid Network),白名单开启时间为UTC时间5月5日13:00至5月8日4:00,第二个IDO平台将于5月8日公布。[2021/5/5 21:26:30]

另一方面,使用ML模型的输出的下游系统,例如链上智能合约,需要能够验证输入是否正确处理以产生声称的输出。

机器学习和zkSNARK协议的结合提供了一种新的解决方案,解决了这些看似矛盾的要求。

ZK-ML用例

声音 | MakerDAO创始人:在价值驱动方面 ETH是Dai生态系统的最稳定选择:据AMBCrypto 11月19日消息,MakerDAO创始人符文·克里斯滕森(Rune Christensen)最近在Blockcrunch采访中谈Dai的抵押品时表示,就驱动价值而言,ETH是Dai生态系统中最稳定的选择。尽管MakerDAO打算在不久的将来找到更多可行的选择。 同时,Rune Christensen进一步设想在将BTC迁移到以太坊区块链之后用比特币支持Dai的问题称:“比特币存在一个普遍的问题,由于它可以被编写的数量有限,因此根本不可能构建更加去中心化的跨链解决方案。”[2019/11/20]

有许多论文讨论了我们可以如何使用zk-SNARKs来改善我们未来的机器学习。ZK-ML社区提供了一个非常有用的决策树,让我们考虑这种技术的各种用例。

这个决策树基于两个标准的交集:需要隐私和计算完整性,以及使用机器学习解决的启发式优化问题。换句话说,决策树用于确定是否适合使用涉及ZKML的用例,在这些用例中,隐私和计算完整性很重要,并且使用机器学习技术解决启发式优化问题,

以下是zk如何用于ML模型创新的一些方式:

隐私保护机器学习

zk-SNARK可用于在不向模型的创建者或用户公开私有数据的情况下对机器学习模型进行训练。这允许开发可以在敏感或受监管的行业中使用的模型,而不会损害使用个人数据的个人隐私。

可验证机器学习

zk-SNARK可用于证明机器学习模型是在特定数据集上进行训练的,或者特定模型用于进行预测,而不会透露训练数据或模型的详细信息。这可以增加对机器学习模型结果的信任,这在信用评分或医学诊断等应用中非常重要。

安全机器学习

zk-SNARK可用于通过确保模型未被篡改或替换为不同的模型来保护机器学习模型的完整性。这在模型部署在不受信任的环境中的应用中非常有用。

ZKonduit可能的应用

像ZKonduit这样的项目正在将ZK-ML视为赋予区块链眼睛、让智能合约行使判断力、单人预言机以及通常以可扩展的方式在链上获取数据的关键。使用ZK-ML预言者提供了一种更简单、更快速、更高效的方式,将链下数据传输到区块链上,大大增加了将数据带到链上的潜力。ZK-ML可以使“智能法官”解释模糊事件。这可能为Web3带来不可想象的新用例,但以下仅是最近讨论过的一些用例:

ZKKYC

能够证明一个人的身份与相应的身份证匹配,并且该身份证号码不在制裁名单上。虽然这项技术是可用的,但监管机构可能不会接受它,因为它们目前要求银行“了解”其客户,而不仅仅是验证他们不在制裁名单上。这是监管机构的一个新领域,必须采取措施防止不受欢迎的参与者使用去中心化项目。

防欺诈检查

智能合约或抽象账户添加了一个ZK-ML欺诈垃圾邮件检查,用于检测异常行为。这意味着可以通过分析活动模式并将其与已知的欺诈或垃圾邮件活动模式进行比较,使用零知识机器学习技术来检测和防止欺诈或垃圾邮件行为。这可以通过检测和防止恶意活动来帮助确保系统的安全性和完整性。

使DAO自治

Zk-SNARKs技术允许以保护输入数据隐私的方式执行复杂计算,适用于需要保护敏感信息的情况。可以将机器学习算法集成到该技术中,以实现更先进的决策制定、评估和更高效、准确的通信系统。这些能力对未来的DAO内部动态可能至关重要。

结论

将零知识证明集成到人工智能系统中,可以为用户和使用这些系统的公司提供新的安全和隐私保护级别。通过使人工智能能够证明其决策的有效性,而不揭示底层数据或算法,零知识证明可以帮助缓解数据泄露和恶意攻击的风险。此外,它们还可以通过提供透明和可验证的方式来证明其公平性和准确性,从而有助于建立人工智能系统的信任。

随着人工智能领域的不断发展和扩大,零知识证明的应用将越来越重要,以确保这些强大技术的安全和负责任的部署。

标签:DAONARARKHECASTRADAO币lunar币价格MARKcoincheck交易平台

币安app官方下载最新版热门资讯
UNI:Uniswap在亚太地区成立社区,即将发起空投活动 速来!

探索开启|UniswapAsia社区成立,Uniswap官网发起UNI社区空投活动,加速DeFi在亚洲地区的扩张!Uniswap是一个创新的区块链协议,旨在打破传统交易所的限制.

1900/1/1 0:00:00
比特币:美联储预测经济衰退:你还应该购买比特币、以太坊吗?

简单来说美联储会议纪要表达了对今年晚些时候经济衰退的预期。然而,比特币在2023年表现良好,自年初以来价格飙升了65%。到目前为止,以太坊今年也表现不错,上涨了约53%.

1900/1/1 0:00:00
以太坊:以太坊上的Rollup比Celestia上的更安全吗?

原文作者:NickWhite原文编译:Luffy,ForesightNews以太坊上的Rollup是否比Celestia上的Rollup更安全?这篇贴文是关于这个问题的权衡.

1900/1/1 0:00:00
CER:Certik:正与ZKSync探讨180万美金社区补偿计划以弥补Merlin DEX事件损失

金色财经报道,据Certik发文表示,在MerlinDEX的恶意开发者实施了RugPull后,正与受影响的各方紧密合作,将与ZKSync探讨社区的补偿计划.

1900/1/1 0:00:00
BAS:教程:如何为潜在BASE空投做准备?

来自Twitter,原文作者:加密行业投资人AxelBitblazeOdaily星球日报讯|Moni4月25日.

1900/1/1 0:00:00
ALEX:EJS 投票上币空投公告

亲爱的BitMart用户,感谢您加入我们的投票赢空投计划,以及您在投票中的努力。祝贺Enjinstarter(EJS)v成功上线!BitMart投票上线活动的空投已经直接分发到所有有效参与计划的.

1900/1/1 0:00:00