研究种类:AIGC, Web3
贡献者:Roy Dong/img/202352600203/0.jpg" />
AIGC技术的快速发展始于GAN(生成对抗网络,2014)模型的发表。它由两个模型组成:生成模型和判别模型。生成器生成“假”数据并试图鉴别器;鉴别器验证生成的数据,并尝试正确识别所有“假”数据。在训练迭代的过程中,两个网络对抗中提升,直到达到平衡状态。
动态 | 维基解密创始人阿桑奇律师称前共和党议员为其提供总统赦免:维基解密创始人阿桑奇(Julian Assange)的律师周三在法庭上发言,声称一名前共和党国会议员向这位维基解密创始人提供了总统赦免。律师Edward Fitzgerald 2月19日在威斯敏斯特地方法院宣布,前国会议员、加州第48区议员Dana Rohrabacher曾代表美国总统特朗普与他的当事人通话。Rohrabacher表示,如果特朗普愿意“配合”,公开声明俄罗斯人没有参与2016年民主党全国委员会电子邮件黑客攻击,他将安排特朗普赦免他。目前白宫和Dana Rohrabacher都否认与Edward Fitzgerald的的说法有任何关联。阿桑奇长期以来一直支持使用加密货币来阻挠政府监管。他目前的律师费目前由企业家Kim Dotcom创建的K.im的比特币交易费用捐款补充。(Cointelegraph)[2020/2/20]
在GAN发表后的两三年时间里,业内对GAN模型进行了各种改造和应用。2016年和2017年,在语音合成、情绪检测、换脸等领域产生了一大批实际应用。
谷歌在2017年开发的Transformer模型逐渐取代了Long and Short Term memory (LSTM)等传统RNN模型,成为NLP问题的首选模型。
作为Seq2seq模型,它提出了注意力机制,计算每个单词与其上下文的相关性,以确定哪些信息对手头的任务最重要。与其他模型相比,Transformer速度更快,并且可以更长时间地保留有效信息。
动态 | 中本聪早期曾评维基解密:不希望其接受比特币捐款而致比特币被扼杀:维基解密创始人阿桑奇昨日于苏格兰被捕,引起不小轰动,此事也对币圈产生了一定影响。据了解,中本聪曾于2010年12月11日晚在国外比特币论坛上对维基解密发表过评论,他回复道:“比特币倘若能在其他环境中获得类似关注就好了,但不希望通过维基解密,因为它捅了大篓子,也将引来麻烦”。而在此之前的12月5日,在维基解密泄露美国外交电报事件期间,比特币社区呼吁维基解密接受比特币捐款以打破金融封锁。对此中本聪曾表示坚决反对,认为比特币尚处于摇篮期,接受捐赠无疑会引发冲突和争议,进而毁了比特币。[2019/4/12]
BERT(来自Transformer的双向编码器表示,2018)使用Transformer构建了一个用于自然语言处理的完整模型框架。它在处理一系列自然语言处理任务上超越了现有的模型。
从那时起,模型的大小不断增加,在最近两年出现了GPT-3、InstructGPT和ChatGPT等一批大模型,其成本也呈几何级数上升。
现今的语言模型有三个特点:大模型、大数据、大计算能力。在上方的图中可以看到模型参数的数量增加得有多快。有人甚至提出了语言模型的摩尔定律,——一年增长十倍。最新发布的ChatGPT模型有1750亿个参数,很难想象在这之后GPT-4中还有多少参数。
动态 | “维基解密”官方BTC地址收到捐款增加,今日共有40多笔捐款:据thenextweb报道,在“维基解密”创始人阿桑奇被捕不久后,维基解密官方的BTC地址收到的打款增加。在阿桑奇被捕的消息传出后不久,维基解密在推特上发布了一个捐赠页面的链接。这可能是导致比特币地址交易量突然飙升的原因。尽管捐款有所增加,但捐赠到其当前地址的总金额只有价值1.5万美元的BTC,其中超过三分之一是维基解密在阿桑奇被捕之前收到的。在撰写本文时,来自Blockchain.com的数据显示,维基解密的BTC地址共收到161笔捐款,今天有40多笔捐款。[2019/4/11]
引入了HFRL(Human Feedback RL, 2022.03)技术,在训练数据集中增加了人的反馈,基于人的反馈进行优化,但由于需要大量的人的注释,成本进一步扩大。
第二点是模型在回答问题时会有自己的原则。之前的聊天机器人在与用户聊天时会将一些负面和敏感的内容一并学习,最后学会谩骂,发表歧视言论。与之前的模型不同,ChatGPT可以识别恶意消息,然后拒绝给出答案。
有记忆:ChatGPT支持连续对话,并能记住与用户之前对话的内容,因此经过多轮对话用户会发现它的答案在不断提升。
在参加2022年奇绩创坛秋季营的55家公司中,有19家AI主题公司、15家元宇宙主题公司和16家大型模型主题公司。与AIGC相关的项目有十余个,其中一半以上是与图像相关的。每个项目的详细信息附在下面的链接中:
美国联邦贸易委员会举办“解密加密货币”免费研讨会:根据4月30日发布的新闻稿,美国联邦贸易委员会(FTC)今年夏天将举办一个名为“解密加密货币”的免费研讨会。研讨会的主要目的是向公众介绍密码货币领域的风险。该活动将包括消费者团体、执法机构、研究机构和私营部门,以研究者如何利用数字货币。 联邦贸易委员会的新闻稿指出,今年对密码的收益有所增加,也增多。[2018/5/1]
Link:https://new.qq.com/rain/a/20221121A04ZNE00
当下AIGC最火的细分赛道当属图像领域,归功于Stable Diffusion的行业应用,图像AIGC在2022年迎来了爆发式的增长。具体地,图像AIGC赛道具有以下优势:
与自然语言处理中的大模型相比,CV领域的模型尺寸相对较小,与Web3的契合度也更高,可以与NFT、元宇宙紧密联系在一起。
与文字相比,人们对图片的阅读成本更低,一直是一种更直观和更容易被接受的表达形式。
图片的趣味性和多样性更高,且该部分技术目前趋于成熟,正在快速迭代。
2022年CVPR的论文《High-Resolution Image Synthesis with Latent Diffusion Models》
通过向图像中添加噪声,可以将一张图片变成随机的噪声图片,扩散模型与之相反,学习如何去除噪声。然后,该模型将这种去噪过程应用于随机的噪声图片,最终生成逼真的图像。
模型需要在效果和效率之间做权衡,在秒级别还是难以生成准确的,用户期待的定制效果。
这些公司的运营和维护成本很高,需要大量的图形显卡设备来带动他们的模型。
赛道中近期涌现大量初创公司,竞争激烈,但缺乏杀手级应用程序。
接下来再来讨论下3D-AIGC,这是一个潜力较大的赛道,目前模型尚不成熟,但未来会成为元宇宙中的刚需的基础设施。
类似于2D图像的生成,3D-AIGC项目能够生成三维物品,进而甚至自动地渲染与构建三维场景。当未来元宇宙得到普及之后,会对虚拟的三位资产有大量的需求。当用户处于三维场景中时,用户需要的不再是二维的图片,而是三维的物体和场景。
相比于生成二维图像,在三维上生成虚拟资产需要考虑更多的东西。一个三维的虚拟物体由两部分组成,一个是三维形状,另一个是物体表面的花纹和图案,我们称之为纹理。
因此一个模型需要选取三维虚拟资产可以分两步生成。在我们获得了一个3D对象的几何图形后,我们就可以通过纹理映射,环境贴图等多种方法来赋予它表面的纹理。
而在描述三维物体的几何形状时也需要考虑多种的表达方式有显式的表达形式,比如网格和点云;也有代数、NeRF(神经辐射场)等隐式的表达方式。具体需要选取适配模型的方式。
总之我们最终需要将所有的这些过程都集成到一起,组成一个文本到3D图像的流程管线,管线比较长,在当下也尚未有成熟的应用端模型出现。但扩散模型的流行会促使许多研究者进一步研究三维图像生成技术。目前这一方向的技术模型也在快速迭代。
相对于VR、XR等需要与人互动、对实时性有严格要求的技术。3D AIGC推的实时性要求更低低,应用门槛和速度会更快一些。
都说AIGC是web3.0时代的生产力工具,AIGC提供大量的生产力,而web3.0与区块链的应用则决定生产关系与用户主权。
但我们必须认识到AIGC和Web3是两个不同的方向。AIGC作为使用AI技术的生产工具,既可以应用于web2世界,也可以应用于Web3世界。到目前为止,大多数已经开发的项目仍然在Web2领域。把两者放在一起谈话是不合适的。而Web3希望借助区块链和智能合约技术,让用户拥有虚拟资产的主权。它与创建模式之间本没有直接联系。
一方面,它们都依靠程序来优化现有的生产和创作模型。AIGC用AI取代人类进行创造,Web3用智能合约、区块链等去中心化程序取代人工中心化机构。用机器代替人,不会有主观的误差和偏差,效率也会显著提高。
另一方面,Web3和元宇宙将对二维的图片和音频,三维的虚拟物体和场景有很大的需求,而AIGC是一个很好的满足方式。
但在web3.0的概念尚未普及到普罗大众的当下,我们能看到涌现出的项目几乎还是Web2的项目,在web3领域的应用目前大量地还是停留在图像生成的AIGC上,用于NFT的创作。
其实在应用端,AIGC和web3.0的联系不能仅仅依靠“生产力”和“生产关系”之间的联系,因为AIGC同样也能给web2项目带来生产力的提升,而web3项目的优势是不明显的。
所以,为了抓住AIGC发展的机遇,我认为当前web3项目需要在以下两个方面进行优化:
一是寻求AIGC加持下的Web3.0原生项目,即只在Web3端能够应用的项目。或者换句话说,去思考如何用AIGC解决Web3项目目前面临的困境,这样的解决方案也是Web3原生的。例如ReadOn用AIGC去生成文章quiz,开辟了Proof of Read的新模式,解决了ReadFi一直以来存在的刷币问题,为真正阅读的用户提供代币奖励。这很难做到,但web3需要这样的模式创新。
二是用AIGC优化现存Web3应用的效率和用户体验。目前AIGC的应用主要存在于图像和NFT上,但其实创作是一个很宽泛的概念,除图片外还有很多种其他的创作方式。上文提到的3D-AIGC是元宇宙中可供思考的应用渠道,quiz生成也是一个眼前一亮的idea。eduDAO和开发者平台可以思考用AIGC来赋能教育,用于出题或者修改模块化的代码、生成单测等等;GameFi可以思考是否能用AIGC来充当游戏里的NPC;甚至能否借助AIGC的coding能力生成智能合约。
金色财经
金色早8点
澎湃新闻
Odaily星球日报
Arcane Labs
深潮TechFlow
欧科云链
链得得
MarsBit
BTCStudy
原文:《Decentralized science (DeSci): Web3-mediated future of science》编译:十文1 月 30 日.
1900/1/1 0:00:00OpenAI新推出的聊天机器人模型ChatGPT横空出世,让人们看到了AI的更大创造力,再次给了我们很大想象力.
1900/1/1 0:00:00近期,虚拟资产行业在经历了2022年的低谷后似乎有复苏迹象,特别是一些别出心裁的网红NFT项目,即使在如今的寒冬期依然逆势上涨,取得了引人瞩目的成绩.
1900/1/1 0:00:00▌ 1月份NFT交易量达9.46亿美元,创2022年6月以来最高记录金色财经报道,据DappRadar数据,2023年1月NFT交易量和销售额的激增,交易量达到9.46亿美元.
1900/1/1 0:00:00Daniel, 2023 年 1 月数据源: Footprint Analytics在 GameFi 中,要知道有多少人真正在玩一个游戏并不那么简单.
1900/1/1 0:00:00金色周刊是金色财经推出的一档每周区块链行业总结栏目,内容涵盖一周重点新闻、行情与合约数据、矿业信息、项目动态、技术进展等行业动态。本文是项目周刊,带您一览本周主流项目以及明星项目的进展.
1900/1/1 0:00:00