北京航空航天大学分布式实验室北京航空航天大学云南创新研究院?周楚涵胡凯
形式化验证是智能合约工程的重要环节,它可以成为对合约进行确定性验证的一种技术,通过形式化语言把合约中的概念、判断、推理转化成智能合约模型,可以消除自然语言的歧义性、不通用性,进而采用形式化工具对智能合约建模、分析和验证,进行一致性测试,最后自动生成验证过的合约代码,形成智能合约生产的可信全生命周期。
1.?????形式化验证
形式化验证是基于形式化方法相关理论。形式化方法起源于20世纪50年代对编译技术的研究,20世纪60年代发生了“软件危机”,当时针对“软件危机”,主要有两种解决方法:一种是采用合理有效的工程方法来管理和组织软件的开发过程,这也是软件工程的起源;另一种是建立严格的数学推导理论,以指导软件开发过程,这方面推进了形式化方法的深入研究。
形式化方法主要包括形式规约和形式化验证。形式规约是指应用具有精确语法和语义的形式化语言来刻画系统的性质和行为,是设计系统约束和验证系统是否正确的依据;形式化验证是在形式规约的基础上,建立系统的行为及其性质的关联,进而验证系统是否需求的关键性质。形式化验证与形式化规约之间具有紧密的联系,形式化验证就是验证已有的程序P,是否满足其规约的要求),它也是形式化方法所要解决的核心问题。
目前常见的形式化验证方法主要可分为两类:演绎验证和模型检测。演绎验证主要基于定理证明的基本思想,采用逻辑公式描述系统及其性质,通过一些公理或推理规则来证明系统具有某些性质。目前主要的演绎验证工具有:基于Manna-Pnueli证明系统的STeP、TLV、机器定理证明器等。模型检测方法的基本思想是通过状态空间搜索来确认合约是否具有某些性质。即给定一个合约P和规约ψ,生成对应于合约模型M,然后证明M╞ψ,即规约公式ψ在合约模型M中成立,这样就证明了合约P满足规约ψ。常用的模型验证工具有:SMV、SPIN、SDL、UPPAAL等。
模型检测技术是近三十年来最成功的自动验证技术之一,目前被广泛地应用于有限状态系统的验证,包括电路设计和通信协议的分析与验证。根据所要验证模型的规格特点,可以分为复合检验器、时态逻辑模型检测器和行为一致检验器。根据采用的不同的技术可以分为:面向状态的模型检测和符号模型检测。模型检测器的基本原理都是一样的,其工作原理如图1???所示。通常情况下,模型都需要经过迭代验证的过程,才能最终满足验证条件。
Juno开发人员:主网暂停源于恶意智能合约攻击,网络正在修复中:4月7日消息,由于网络攻击,基于Cosmos的区块链Juno于周二下线。根据该项目官方推特转发的消息,截至发稿时该网络仍处于离线状态,但没有用户资金受到影响,Juno核心开发团队表示正在修复中。一位不愿透露姓名的Juno核心开发人员表示,网络崩溃源于一个恶意智能合约,该合约被伪装成一个简单的“hello world”程序。可疑的攻击者在三天的时间里向智能合约发送了超过400笔交易,这显然是一个反复试验的过程,最终锁定了一个特定的交易组合,导致网络崩溃。 开发人员称,攻击者利用了一个区块链漏洞,Juno计划在攻击发生后的几个小时内通过更新来解决这个漏洞。该开发者表示,该漏洞已被公开披露,因为它影响了所有使用CosmWasm智能合约平台的区块链。此前消息,Juno在区块高度2578108处停止出块。(CoinDesk)[2022/4/7 14:09:13]
图1模型检测器原理
形式化验证是一种基于数学和逻辑学的方法,在智能合约部署之前,对其代码和文档进行形式化建模,然后通过数学的手段对代码的安全性和功能正确性进行严格的证明,可有效检测出智能合约是否存在安全漏洞和逻辑漏洞。该方法可以有效弥补传统的靠人工经验查找代码逻辑漏洞的缺陷。形式化验证技术的优势在于,用传统的测试等手段无法穷举所有可能输入,而我们用数学证明的角度,就能克服这一问题,提供更加完备的安全审计。
2.???形式化验证在区块链领域的应用现状
随着区块链平台级应用的普遍化,智能合约涉及的金额呈指数级别增长,智能合约的安全问题也成为投资者和开发者共同关注的焦点。今年以来有数个基于ERC-20的项目因为智能合约代码出现漏洞而遭到黑客攻击,导致投资者巨额的损失。为了防止类似事件的发生,交易所、钱包、项目方等都在智能合约安全上加大投入,同时围绕着智能合约安全的周边生态成为目前投资的热点。
NEM与智能合约平台Fantom基金会达成合作:官方消息,NEM宣布与智能合约平台Fantom基金会达成合作,以使NEM生态能轻松地参与DeFi和Symbol。[2021/3/31 19:33:59]
形式化验证技术已经在军工、航天等高系统安全要求领域的取得了相当成功的应用,将形式化方法应用于智能合约,使得合约的生成和执行有了规范性约束,保证了合约的可信性,使人们可以信任智能合约的生产过程和执行效力。通过形式化语言,把合约中的概念、判断、推理转化成智能合约模型,可以消除自然语言的歧义性、不通用性,进而采用形式化工具对智能合约建模、分析和验证,进行一致性测试。合约的形式化验证保证了合约的正确属性,自动化代码生成提高了合约的生成效率,合约的一致性测试保证了合约代码与合约文本的一致性。
目前区块链产业中与形式化验证相关的产品可以分为三类:VaaS平台,公链,和语言,应用尚在技术的早期,自动化程度和实用性,及用户工具还有待于极大的进步。
Vaas平台
是直接面向开发者提供形式化验证服务的平台。目前Vaas类项目包括CertiKzecurify.ch、RuntimeVerification等项目。目前,CertiK仍在初始阶段,Securify.ch的测试版已经上线,而RuntimeVerification已经在商业运营。
与其它几个项目不同,RuntimeVerification是基于EVM虚拟机二进制码进行形式化验证,而非针对智能合约本身用的高级语言,因此在安全性上又更进一步,避免了因编译器编译过程中可能产生的漏洞。
语言
语言类产品一般为函数式语言的子语言,提供与智能合约形式化验证相关的开发者库和工具,目前有Imandra和Tezos等项目。
数据:中心化交易所及智能合约中的以太坊供应量变化呈鲜明对比:Glassnode数据显示,2020年以来,中心化交易所(CEX)及智能合约中的以太坊供应量变化呈现鲜明对比。前者逐步下降,供应量占比自14.50%左右已跌至11.50%附近;后者逐步上升,自11.50%左右攀升至15%上方,且在8月末完成了对前者的超越。[2020/9/19]
其中,Imandra发布了一套开源的以太坊虚拟机用ImandraML语言标记的模型,并且专注于交易所等金融应用场景的形式化验证,用以确保金融交易的合法合规,据称相关技术已经用于华尔街顶级投行的交易系统。
公链
直接包含形式化验证引擎的公链产品目前只有TheMatrix项目,特征是基于AI辅助的形式化验证及动态约束的检查。AI是否对于形式化验证的自动化带来帮助在技术上仍是个未知数。
3.?????智能合约的形式化验证
智能合约的安全性验证问题迫在眉睫,智能合约可能存在的主要安全隐患有:1)合约中某一方利用合约漏洞修改合约,使得合约执行结果偏向某一方;2)智能合约攻击者利用合约漏洞攻击合约,造成合约中财产的损失。这最终都会导致人们对于智能合约的不信任。在智能合约的验证方面,形式化验证方法可以检查智能合约的很多属性,例如,合约的公平性、可达性、有界性、活锁、死锁、不可达,以及无状态二义性等。形式化方法重点可以解决智能合约产生与执行的可信性问题。采用模型检测的优点是完全自动化并且验证速度快,即便是只给出了部分描述的合约,通过搜索也可以提供关于已知部分正确性的有用信息。尤其重要的是,在性质未被满足时,搜索终止可以给出反例,这种信息常常反映了合约设计中的细微失误,因而对于合约排错有极大的帮助。
这里我们采用模型检测工具SPIN对智能合约进行验证。SPIN是用来检测和验证分布式软件系统的模型检测器。SPIN即PROMELA解析器,是由美国贝尔实验室开发并用于形式化验证分布式软件系统的模型检测器,是一种广泛应用于大规模复杂软件系统的形式化模型检测器,与商业性模型检测器相比,SPIN在技术上和使用上更加自由和开放。
国内首个区块链智能合同专利花落南京:3月11日消息,日前,总部位于南京的中国云签获得国家知识产权局授予的国内首个区块链智能合同领域的核心发明专利授权。中国云签运营“国家电子缔约安全保障服务平台”,在电子政务、商务领域为企业和个人提供等同纸质效力的电子合同缔约与区块链存证服务。目前,中国云签拥有电子合同企业标准的自主知识产权20多项,在电子合同实名认证、电子签约流程、合同存储验真三个方面拥有国家发明专利。(中国江苏网)[2020/3/11]
描述一个智能合约,包括以下几个方面:合约方的信息、合约状态机、各个合约方的执行状态机。
我们定义智能合约
,为一个二元组,其中:
Con为合约的基本信息描述,Con={CId,CTimeStamp,CTime,CSign},CId为合约标识,是区分合约的唯一标识,CTime为合约的时限,即合约的有效期,CTimeStamp为合约的时间戳,即签订合约的日期,CSign为合约方的签名。
Machine={
},表示各个合约方的执行状态机的集合,
表示第i个合约方的执行状态机。
动态 | 多数以太坊智能合约仍用于交易 dApp未达预期:据CCN消息,SFOX的新数据,描绘了以太坊网络上dApp开发现状。根据对超过3000万的Ethereum交易进行的分析得出的数据,网络上排名前10位的智能合约主要由ICO和交易活动所主导,流行的CryptoKitties dApp只有一个单独的位置。数据显示,Ethereum并不能作为一个为智能合同提供动力的简单而强大引擎,dApp开发者可以将其用于任何目的,成本和规模问题仍然是实现这一愿景的一个重大挑战。到目前为止,绝大多数以太坊智能合约活动仍然致力于交易ETH和基于以太坊的代币。dApps根本没有像投资者希望的那样成功。[2018/10/27]
合约状态机
=<MStatus,CInput,COutput,CFunction,CInit,CFinal,CBackground>,为一个多元组,其中:
MStatus是智能合约中第i个合约状态机的所有状态的集合和对集合的描述,MStatus={
,
,
,
?},其中,i表示第i个进程(0
i
n),
表示合约的第i个进程的进程集合。一个合约是由一个或多个进程组成的。
CInput是合约的输入集合,CInput={CIEvent,CITime},CIEvent为合约输入的事件,CITime为合约输入的时间。智能合约有两种触发执行机制,分别为时间触发和事件触发,合约通过时间或事件的输入触发合约的执行,使得智能合约的状态发生变化。
COutput是合约输出的集合,COutput={COData},COData为合约输出的数据。智能合约规定可以部分执行完成,因此,合约的输出可能是合约执行中间的一个结果输出,也可能是合约全部执行完成。合约的输出统一使用数据类型表示,每一个输出都意味着合约状态的迁移,同时每一次合约输出都分别对应了一个合约状态。
CFunction是合约状态转换函数的集合,且有CFunction:MStatus
MStatus。
CInit为合约初始状态值,且
。
CFinal为合约终止状态的集合,CFinal={
,
,
,
},且
。
CBackground为智能合约其他相关信息的描述。
在智能合约的描述过程中,合约的状态变迁过程代表了合约的执行过程,合约模型采用PROMELA进行合约建模。
SPIN的验证过程,首先从描述系统模型的规格开始,经过编译器的分析确定没有语法错误后,对系统模型进程之间的交互进行模拟,直至确认系统模型中出现的行为和系统设计的预期行为一致。其次,SPIN从系统的高级规约中会生成一个优化后的on-the-fly验证程序,经过编译器编译后执行,执行中会检测是否有违背正确性说明,若有反例出现,则返回交互模拟的执行状态进行再修正,确认出错原因,直至完成正确性验证。其验证框架如图2所示
图2基于SPIN验证框架
据此验证框架,我们设计完成了一个形式化验证系统,取得了较好的验证效果,值得推广应用,后文将给出一个验证案例。
?数字货币的发展在经历了螺旋式上升之后,进入数字法币时代。在与国家信用结合的过程中,货币的数字化进程为货币的全球化提供了巨大的技术推动力,同时也带来了新型的监管问题.
1900/1/1 0:00:00来源:上证报·中国证券网中国法定数字货币DC/EP正在成为金融领域焦点,其中,何时正式亮相更是为世人所瞩目.
1900/1/1 0:00:00全球去中心化黑客团体Anonymous刚刚宣布组建比特币基金。这些价值7500万美元的比特币将用于促进隐私增强技术和加密货币的发展.
1900/1/1 0:00:00MorganCreekCapital首席执行官马克·尤斯科在今天的数字资产峰会上发表了主题演讲,向听众提供了一些简单但可能有争议的建议:出售您的亚马逊股票和购买比特币.
1900/1/1 0:00:00据Cointelegraph近日报道,全球银行业巨头汇丰银行将携手新加坡交易所和淡马锡投资公司,联合利用区块链发行固定收益证券.
1900/1/1 0:00:00据Cointelegraph近日消息,美国怀俄明州为所谓的“区块链银行”公布了一系列托管规则,涉及分叉、空投和权益质押等领域.
1900/1/1 0:00:00